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● Building Blocks 

● A new  compute node 

● Dragonfly Topology 
 
● Network and benchmark performance 



Cray XC30 Compute Blade Architecture 
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XC30 Compute Blade 
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Cray XC30 System Building Blocks 

5 



Cray XC30 Compute node: 
Processor and environment 

comparison 
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●  2 Multi-Chip Modules, 4 Opteron Dies 
●  24 (or 16) Computational Cores, 24 MB of L3 cache 
●  8 Channels of DDR3 Bandwidth to 8 DIMMs 
●  Dies are fully connected with HT3 

XE6 Compute Node Details:  
24-core Magny Cours 

To Interconnect 

HT3	
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Cray XC30 Compute Blade Architecture 
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MAGNY COURS 
�  6 cores per die 

�  4 die per node 
�  Each core has 

�  1 user thread 
�  1 SSE (vector) functional group 

�  128 bits wide 
�  1 add and 1 multiply 

�  L1 cache size = 32 Kbytes 
�  L2 cache size = .5 Mbytes 

�  L3 cache, size = 6 Mbytes 
�  Cache per core = .5 + 6/6 = 1.5 Mbytes 
�  Cache BW per core 

�  L1 / L2 / L3 = 35 / 3.2 / 3.2  Gbytes/s 
�  Stream TRIAD BW/node = 52 Gbytes/s 
�  Peak DP FP per core = 4 flops/clk 
�  Peak DP FP per node = 96 flops/clk 
� Memory latency = 110 ns 

Magny Cours vs Ivybridge:  bake-off 
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Ivybridge 
�  12 cores per die  

�  2 die per node 
�  Each core has 

�  1 or 2 user threads 
�  1 AVX (vector) functional group 

�  256 bits wide 
�  1 add and 1 multiply 

�  L1 cache size = 32 Kbytes 
�  L2 cache size = 256 kbytes 

�  L3 cache, size = 30 Mbytes 
�  Cache per core=  30/8 = 2.5 Mbytes 
�  Cache BW per core 

�  L1 / L2 / L3 = 100 / 40 / 23 Gbytes/s 
� Stream TRIAD BW / Node = 100 Gbytes/s 
�  Peak DP FP per core = 8 flops/clk 
�  Peak DP FP per node = 480 Gflops 
� Memory latency = 82 ns 



Sandybridge and Ivybridge 
Sandybridge 

�  8 cores per die  
�  2 die per node 

�  Each core has 
�  1 or 2 user threads 
�  1 AVX (vector) functional group 

�  256 bits wide 
�  1 add and 1 multiply 

�  L1 cache size = 32 Kbytes 
�  L2 cache size = 256 kbytes 

�  L3 cache, size = 20 Mbytes 
�  Cache per core=  20/8 = 2.5 Mbytes 
�  Cache BW per core 

�  L1 / L2 / L3 = 105 / 42 / 26 Gbytes/s 
� Stream TRIAD BW / Node = 77 Gbytes/s 
�  Peak DP FP per core = 8 flops/clk 
�  Peak DP FP per node = 320 Gflops 
� Memory latency = 82 ns 
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Ivybridge 
�  12 cores per die  

�  2 die per node 
�  Each core has 

�  1 or 2 user threads 
�  1 AVX (vector) functional group 

�  256 bits wide 
�  1 add and 1 multiply 

�  L1 cache size = 32 Kbytes 
�  L2 cache size = 256 kbytes 

�  L3 cache, size = 30 Mbytes 
�  Cache per core=  30/8 = 2.5 Mbytes 
�  Cache BW per core 

�  L1 / L2 / L3 = 100 / 40 / 23 Gbytes/s 
� Stream TRIAD BW / Node = 100 Gbytes/s 
�  Peak DP FP per core = 8 flops/clk 
�  Peak DP FP per node = 480 Gflops 
� Memory latency = 82 ns 

Intel NDA Cray Private 



Single Stream vs Dual Stream 
●  Cray compute nodes booted with hyperthreads always ON 
●  User can choose to run with one or two ranks/pes/threads per core 
●  Choice made at runtime 

●  aprun –n### -j1 …     ->  Single Stream mode, one rank per core 
●  aprun –n### -j2 …     ->  Dual Stream mode, two ranks per core 

●  Default is Single Stream 
●  Dual Stream often better if… 

●  throughput is more important OR… 
●  performance per node is more important OR… 
●  your code scales extremely well 

●  Single Stream often better if… 
●  single job performance matters more 
●  per core performance matters most (code does not scale well) 

●  Cray ended up running 4 or the 7 “NERSC SSP” codes in dual 
stream mode to maximize overall system score 
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Core specialization 
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●  System ‘noise’ on compute nodes may significantly  
degrade scalability for some applications 

●  Core Specialization can mitigate this problem 
●  M core(s)/cpu(s) per node will be dedicated for system work (service core) 
●  As many system interrupts as possible will be forced to execute 

on the service core 
●  The application will not run on the service cpus 

●  Use aprun -r to get core specialization 
   $ aprun –r[1-8] –n 100 a.out 
●  Highest numbered cpus will be used 

●  Starts with cpu 31 on Sandybridge nodes 
●  Independent of aprun –j setting 
●  apcount provided to compute total number of cores required 

 man apcount 
  



Running with OpenMP and the Intel PE 
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● An extra thread created by the Intel OpenMP runtime 
interacts with the CLE thread binding mechanism and 
causes poor performance 

●  To work around this issue cpu-binding should be turned off 
●  Allows user compute threads to spread out over available resources 
●  Helper thread will no longer impact performance 

 
● Note:  This is only an issue for running OpenMP programs 

that were compiled and linked with the Intel compiler 



Examples of using MPI and OpenMP with Intel PE 
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● Running when “depth” divides evenly into the number of 
“cpus” on a socket  
export OMP_NUM_THREADS=“<=depth” 
aprun -n npes -d “depth” -cc numa_node a.out 

● Running when “depth” does not divide evenly into the 
number of “cpus” on a socket  
export OMP_NUM_THREADS=“<=depth” 
aprun -n npes -d “depth” -cc none a.out 
 

●  Take into account –j1 vs –j2 
●  These “-cc” options turn off cpu binding 

●  Your process/thread may switch cores in the middle of execution 

● Would LOVE to see a comparison of performance between  
shutting off binding and forcing binding 



Cray XC30 Dragonfly 
Topology 
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Cray XC30 Network 

●  The Cray XC30 system is built around the idea of optimizing 
interconnect bandwidth and associated cost at every level 

Rank-1 
PC Board:  ¢¢¢ 

Rank-2 
Passive CU:  $ 

Rank-3 
Active Optics:  $$$$ 
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Cray XC30 Rank1 Network 

o  Chassis with 16 compute blades 
o  128 Sockets 
o  Inter-Aries communication over 

backplane 
o  Per-Packet adaptive Routing 

10/10/13 
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16 Aries connected 
by  backplane  

“Green Network” 

Cascade – Local Electrical Network 
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4 nodes 
connect to a 
single Aries 

6 backplanes 
connected with 

copper cables in a 2-
cabinet group: 

“Rank-2 Network” 

Active optical 
cables interconnect 

groups 
“Rank-3 Network” 

2 Cabinet 
Group 

768 Sockets 



Cray XC30 Rank-2 Cabling 

● Cray XC30 two-
cabinet group 
●  768 Sockets 
●  96 Aries Chips 
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Cray XC30 Adaptive Routing 
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With adaptive routing 
we select between 
minimal and non-
minimal paths based 
on load 

The Cray XC30 
Class-2 Group has 
sufficient bandwidth to 
support full injection 
rate for all 384 nodes 
with non-minimal 
routing 

M

Minimal route 
between any two 

nodes in a group is 
just two hops 

Non-minimal route 
requires up to four 

hops. 

R M

M

● Adaptive routing allows the Cray XC network to 
handle a diverse set of traffic patterns at full speed 
●  Significant advantage over Infiniband on real traffic patterns 

Cray Proprietary 



Cray XC30 – Rank-3 Network 

●  An all-to-all pattern is wired between the 
groups using optical cables (blue 
network) 

●  The global bandwidth can be tuned by 
varying the number of optical cables in 
the group-to-group connections 

Example:  A 7-group system is interconnected with 21 optical “bundles”.  The “bundles” 
can be configured between 2 or more cables wide, subject to the group limit. 

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

10/10/13 
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Adaptive Routing over the Blue Network 
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●  An all-to-all pattern is 
wired between the groups 
 

 

Group 0 

Group 1 

Group 2 

Group 3 Group 4 

Assume	
  Minimal	
  path	
  
from	
  Group	
  0	
  to	
  3	
  
becomes	
  congested	
  

Traffic	
  can	
  “bounce	
  
off”	
  any	
  other	
  
intermediate	
  group	
  

Doubles	
  load	
  on	
  network	
  but	
  
more	
  effec>vely	
  u>lizes	
  full	
  
system	
  bandwidth	
  



Why use Huge Pages? 
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●  On edison huge pages are a performance enhancement 
●  On hopper hugepages were a functional requirement for some codes 

●  The Aries may perform better with HUGE pages than with 4K pages. 
●  HUGE pages use less Aries resources than 4k pages 
●  More important when remotely access large percentage of nodes memory in an 

irregular manner 
●  Large AlltoAll 
●  AMO GUPS 

●  Still be watchful for memory page fragmentation 
●  Might still get “cannot run errors” because it cannot find enough large hugepages 

●  Use modules to change default page sizes (man intro_hugepages): 
●   e.g. module load craype-hugepages# 

●   craype-hugepages2M 
●   craype-hugepages8M 
●   craype-hugepages16M 
●   craype-hugepages32M 



MPI Latency and Bandwidth 
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Multipong Benchmarks 

Test Description Measured Units 

Maximum Inter-Node Latency Single-Core, 
Farthest-node pair (1) 1.920 µsecs 

Minimum Inter-Node Latency Single-Core, 
Nearest-node pair (2) 1.498 µsecs 

Maximum Intra-Node Latency Single-Core, 
cross socket (3) 0.545 µsecs 

Minimum Intra-Node Latency Single-Core, 
same socket (4) 0.267 µsecs 

Maximum Inter-Node Latency Fully-packed 
Nodes, Farthest-node pair (5) 2.452 µsecs 

Maximum Inter-Node Latency Fully-packed 
Nodes, Nearest-node pair (6) 2.027 µsecs 

Maximum Bandwidth Multi-Core Nearest 
Nodes (7) 9255 MB/s 



Point-to-Point Aries vs. Gemini 

Typical Point-to-point bandwidth 
Case Gemini Aries 

(GB/s) (GB/s) 
“On Gemini/Aries” ~5 ~8-10 
“Long Range” ~1.5-3 ~8-10 

Cray Inc. Proprietary – Not For Public Disclosure 
 

(25)  

§  Long Range transfers on Aries will be able to adapt around any 
hot spots in the network and continue at full speed 

§  Maximum latency will be much lower on Aries 



Optical network rarely limiting factor in real life 
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● Most traffic patterns will be limited by the sustained 
injection bandwidth 
●  Sustained injection bandwidth is in the 3-6 Gbytes/sec range 
●  Nearest Neighbor communication mostly stays on-group 

● Examples of optical bound benchmarks 
●  Full system alltoall with <50% of optical cables connected 
●  Pure bi-section bandwidth tests, but that is not common in real codes 
●  Global bandwidth intensive codes that are packed into just a few groups 

●  Seems unlikely to occur in production 

●  Less then full system runs are unlikely to be optical limited 

● Communication intensive applications are more likely to be 
injection bandwidth bound rather than network bound 
●  Consider optimization that maximize on-node traffic and minimize off-

node traffic 



Additional Network test 
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● MPI_ALLTOALL 
●  Dmapp optimization during communication in available under 6.0 

●  MPICH_USE_DMAPP_COLL = 1 
●  Measured ~ 9 Tbytes / second of global bandwidth 

●  Very good performance for this configuration 

● MPI Barrier / Allreduce – excellent scaling with dmapp 
version 

●  Initial conclusions:   
●  High speed network is healthy and performing well.   
●  Full system performance is very good.   
●  Adaptive routing working very well (as designed). 



Placement Strategies impact on 3D stencil 

10/10/13 
28 

●  Run on 14 copies of a 3D stencil code 
simultaneously on a 28 cabinet 
system with partial optical network 

●  Spread Allocation w/ Natural 
Placement 
●  Spread across the machine 
●  “Naturally” fill your portion of the group 

before moving on to the next group 
●  Preserves some spatial locality while still 

spreading out the job 

●  Randomized Node 
●  Spread across the machine 
●  No spatial locality 

●  “Packed Group” fills a cabinet before 
moving on to the next cabinet 
●  Maximizes on-group traffic 

●  Conclusions 
●  Natural placement a good idea 
●  Don’t destroy spatial locality 
●  Pack Group slightly better, but 

performance is not hurt significantly if job 
gets spread out 
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Near perfect scaling of MILC 
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MILC Weak Scaling Test on 12 cab with quarter optical 
network 

● MILC does a 4D Nearest Neighbor Halo exchange 
●  Cause significant network contention on a 3D torus 
●  Significant amounts of traffic stays on group 
●  Also sets up patterns were all off-group traffic goes to one other group 
●  Would only work well if adaptive routing was working well 



Summary 
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● On-node 
●  24 cores per node on edison; similar to hopper  

●  Edison has new –j1 vs –j2 (hyperthreading) feature 
●  Edison has ~2X the bandwidth of hopper per node 
●  Intel compiler now available 

● Network 
●  Edison has improve injection bandwidth over hopper 
●  Edison has a greatly improved network bandwidth 

●  Global bandwidth is significantly higher 
●  Adaptive routing minimizes hot spots 
●  Better scaling  
●  Less job-job interference 

●  Communication intensive applications more likely to be injection 
bandwidth bound rather than network bound 

● Overall application performance should be significantly 
improved compared to hopper 



The End 


